Best News Network

Team creates supercritical carbon dioxide turbomachinery for concentrated solar power plant

SwRI collaborates to create sCO2 turbomachinery for concentrated solar power plant
Credit: Southwest Research Institute

Southwest Research Institute worked with government and commercial collaborators to successfully develop and demonstrate full-scale turbomachinery for one of the world’s first supercritical carbon dioxide (sCO2) power systems for a concentrated solar power (CSP) plant. The technology combines sCO2 power cycles with integrated thermal energy storage.

The project was supported by the U.S. Department of Energy’s APOLLO program, which was created to improve performance and reduced the cost of electricity from CSP plants.  The 10MW sCO2 turbomachinery has successfully completed performance and endurance tests in a closed-loop environment.

sCO2 is carbon dioxide held above a critical temperature and pressure, which causes it to act like a gas while having the density of a liquid. It’s also nontoxic and nonflammable, having been used in dry cleaning processes, low-GHG refrigeration systems, as well as to decaffeinate coffee.

The fluid properties in its supercritical state makes sCO2 a highly efficient fluid to generate power due to high density, low viscosity and favorable heat transfer properties.

“Advancing grid-scale energy storage is an important step to enabling full penetration of renewables into power generation. Utilizing sCO2 as a working fluid can increase the efficiency of a CSP plant by as much as 10 percentage points,” said Dr. Jason Wilkes, manager of SwRI’s Rotating Machine Dynamics Section. “The high efficiency of the sCO2 cycle also allows the turbomachinery to have a smaller footprint—it is 1/20th the size of a standard steam turbine, allowing for improved installation in most environments.”

CSP technology uses mirrors or lenses to concentrate a large amount of sunlight onto a receiver, which typically converts concentrated light into heat and extracts thermal energy to generate power using steam turbines. The system stores the energy as heat, which can then be converted to on-demand energy using sCO2 power cycles, improving efficiency and reducing operating costs.

“sCO2 power cycle technology is a fraction of the size of conventional turbomachinery, offering improved performance for numerous applications. The successful MW-scale demonstration of sCO2 technology at full-cycle conditions is an exciting milestone,” said Dr. Tim Allison, director of SwRI’s Machinery Department.

SwRI and Hanwha Power Systems, a global energy equipment company with headquarters in South Korea, developed and demonstrated the new integrally geared sCO2 turbomachinery tested at full-scale compressor conditions and full-pressure full-temperature testing of the turbine at unprecedented MW-scale conditions of up to 720 °C and 275 bar. The system is planned to be integrated into a CSP pilot plant at a future date.


Researchers create innovative model for supercritical carbon dioxide power generation


More information:
More info on sCO2 tech: www.swri.org/supercritical-car … ioxide-power-systems

Provided by
Southwest Research Institute


Citation:
Team creates supercritical carbon dioxide turbomachinery for concentrated solar power plant (2022, January 17)
retrieved 17 January 2022
from https://techxplore.com/news/2022-01-team-supercritical-carbon-dioxide-turbomachinery.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no
part may be reproduced without the written permission. The content is provided for information purposes only.

Stay connected with us on social media platform for instant update click here to join our  Twitter, & Facebook

We are now on Telegram. Click here to join our channel (@TechiUpdate) and stay updated with the latest Technology headlines.

For all the latest Technology News Click Here 

 For the latest news and updates, follow us on Google News

Read original article here

Denial of responsibility! NewsAzi is an automatic aggregator around the global media. All the content are available free on Internet. We have just arranged it in one platform for educational purpose only. In each content, the hyperlink to the primary source is specified. All trademarks belong to their rightful owners, all materials to their authors. If you are the owner of the content and do not want us to publish your materials on our website, please contact us by email – [email protected]. The content will be deleted within 24 hours.