Best News Network

Scientists develop faster COVID-19 test: Technique avoids RNA degradation and time-consuming extraction

Scientists at the National Institutes of Health (NIH) have developed a new sample preparation method to detect SARS-CoV-2, the virus that causes COVID-19. The method bypasses extraction of the virus’ genetic RNA material, simplifying sample purification and potentially reducing test time and cost. The method is the result of a collaboration among researchers at the National Eye Institute (NEI), the NIH Clinical Center (CC), and the National Institute of Dental and Craniofacial Research (NIDCR).

Diagnostic testing remains a crucial tool in the fight against the COVID-19 pandemic. Standard tests for detection of SARS-CoV-2 involve amplifying viral RNA to detectable levels using a technique called quantitative reverse transcription PCR (RT-qPCR). But first, the RNA must be extracted from the sample. Manufacturers of RNA extraction kits have had difficulty keeping up with demand during the COVID-19 pandemic, hindering testing capacity worldwide. With new virus variants emerging, the need for better, faster tests is greater than ever.

A team led by Robert B. Hufnagel, M.D., Ph.D., chief of the NEI Medical Genetics and Ophthalmic Genomic Unit, and Bin Guan, Ph.D., a fellow at the Ophthalmic Genomics Laboratory at NEI, used a chelating agent made by the lab supply company Bio-Rad called Chelex 100 resin to preserve SARS-CoV-2 RNA in samples for detection by RT-qPCR.

“We used nasopharyngeal and saliva samples with various virion concentrations to evaluate whether they could be used for direct RNA detection,” said Guan, the lead author of a report on the technique, which published this week in iScience. “The answer was yes, with markedly high sensitivity. Also, this preparation inactivated the virus, making it safer for lab personnel to handle positive samples.”

Hufnagel’s team made their discovery by testing a variety of chemicals using synthetic and human samples to identify those that could preserve the RNA in samples with minimal degradation while allowing direct detection of the virus by RT-qPCR.

To validate the test, NIDCR’s Blake M. Warner, D.D.S., Ph.D., M.P.H., and his team collected patient samples (on Research Protocol NIH IRB 20-D-0094) and stored them in either viral transport media, or the newly developed chelating-resin-buffer at the NIH Symptomatic Testing Facility.

The samples in viral transport media were tested by the COVID-19 testing team at NIH’s Clinical Center, led by Karen M. Frank, M.D., Ph.D., using conventional RNA extraction and RT-qPCR testing. The samples in the chelating-resin-buffer were heated and the viral RNA was, then, tested by RT-qPCR. The new preparation significantly increased the RNA yield available for testing, compared to the standard method.

“We think this novel methodology has clear benefits of increasing sensitivity, cost and time savings for testing,” said Hufnagel, “The method stabilizes the RNA at room temperature for easier transport, storage, and handling in clinical settings.”

Story Source:

Materials provided by NIH/National Eye Institute. Note: Content may be edited for style and length.

Stay connected with us on social media platform for instant update click here to join our  Twitter, & Facebook

We are now on Telegram. Click here to join our channel (@TechiUpdate) and stay updated with the latest Technology headlines.

For all the latest Health News Click Here 

 For the latest news and updates, follow us on Google News

Read original article here

Denial of responsibility! NewsAzi is an automatic aggregator around the global media. All the content are available free on Internet. We have just arranged it in one platform for educational purpose only. In each content, the hyperlink to the primary source is specified. All trademarks belong to their rightful owners, all materials to their authors. If you are the owner of the content and do not want us to publish your materials on our website, please contact us by email – [email protected]. The content will be deleted within 24 hours.