Best News Network

Research team develops aqueous rechargeable batteries based on zinc anodes

Water for drinking? Nope, water for batteries
Schematic diagram of an aqueous zinc battery stabilized by a protective polymer layer. Credit: POSTECH

Can we survive three minutes without air or three days without water? How about without batteries? Imagine not having a battery for three hours.

Lightweight, high-capacity lithium-ion batteries are widely used in mobile phones, laptops, and other necessities in today’s world. However, the organic electrolytes in conventional lithium-ion batteries are highly flammable, leading to fatal fires or explosions. As lithium-ion batteries are widely used in our lives, such accidents can cause direct damage to users, which has led to a demand for a safer battery system.

Professor Soojin Park and Gyujin Song (Post-doc fellow) in the Department of Chemistry and Ph.D. candidate Sangyeop Lee of the Division of Advanced Materials Science at POSTECH together developed a stable aqueous zinc-ion battery that uses water as an electrolyte. They employed a protective polymer layer to prevent electrode corrosion and increase the stability of the zinc anode, improving the electrochemical stability of the aqueous zinc-ion battery. They published their results in Cell Reports Physical Science.

The organic-solvent-based electrolyte, which serves as a medium for ions to move inside the typical battery system, is inherently flammable, posing risk of explosion or fire. To address this issue, aqueous electrolyte batteries are being developed as promising replacements. However, the inferior reversibility of the zinc anode in aqueous electrolytes, which are caused by zinc dendrites and surface side reactions, has prevented zinc-ion batteries from being used.

The POSTECH research team developed a zinc anode coated with a multifunctional protective layer by using a block copolymer. This new polymer layer is elastic and stretchable, enduring volume expansion during battery charging and discharging.

The polymer protective layer is found to induce homogenized ion distribution and suppress dendritic growth, contributing to a long-term zinc anode lifespan. The thin film layer also improves the electrode stability by suppressing unnecessary chemical/electrochemical reactions in the electrolyte on the electrode surface.

Furthermore, the researchers revealed the movement of zinc ions in the coating layer by using time-of-flight secondary ion mass spectrometry (TOF-SIMS) analysis. Imaging the zinc ion movements, which was not successful in previous studies, promises further research on the surface properties of battery anodes.

More information:
Sangyeop Lee et al, Ion-selective and chemical-protective elastic block copolymer interphase for durable zinc metal anode, Cell Reports Physical Science (2022). DOI: 10.1016/j.xcrp.2022.101070

Provided by
Pohang University of Science & Technology (POSTECH)

Citation:
Research team develops aqueous rechargeable batteries based on zinc anodes (2022, November 2)
retrieved 2 November 2022
from https://techxplore.com/news/2022-11-team-aqueous-rechargeable-batteries-based.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no
part may be reproduced without the written permission. The content is provided for information purposes only.

Stay connected with us on social media platform for instant update click here to join our  Twitter, & Facebook

We are now on Telegram. Click here to join our channel (@TechiUpdate) and stay updated with the latest Technology headlines.

For all the latest Technology News Click Here 

 For the latest news and updates, follow us on Google News

Read original article here

Denial of responsibility! NewsAzi is an automatic aggregator around the global media. All the content are available free on Internet. We have just arranged it in one platform for educational purpose only. In each content, the hyperlink to the primary source is specified. All trademarks belong to their rightful owners, all materials to their authors. If you are the owner of the content and do not want us to publish your materials on our website, please contact us by email – [email protected]. The content will be deleted within 24 hours.