Site icon News Azi

Researchers develop stable kilowatt-scale aqueous organic flow batteries

1MB-4AA eutectic electrolyte. Credit: Energy & Environmental Science (2022). DOI: 10.1039/D2EE03051A

Flow batteries (FBs) are promising in large-scale energy storage due to their high security and effectiveness. Among them, aqueous organic flow batteries (AOFBs) that utilize structural tunable and eco-friendly redox-active molecules are getting increased attention.

However, most organic molecules in AOFBs are prone to be oxidized especially by air, resulting in irreversible capacity decay and hindering their further applications.

Recently, a research group led by Prof. Li Xianfeng and Prof. Zhang Changkun from the Dalian Institute of Chemical Physics (DICP) of the Chinese Academy of Sciences (CAS) has developed stable kilowatt-scale AOFB stacks with high-performance organic redox-active molecules.

This study was published in Energy & Environmental Science on Dec. 1.

The researchers revealed the stabilization mechanism of one redox-active molecule, methylene blue (MB), and demonstrated that the stabilizations of MB, especially in both intermediate free radical state and reduced state, played a vital role in improving redox reversibility and air-stability.

They monitored MB by in-situ nuclear magnetic resonance (NMR) and found that free radicals were generated by comproportionation reactions between oxidized and reduced states in the electrolyte.

“We optimized electrolyte composition by tuning the interaction between different components in the electrolyte, thereby increasing the battery capacity,” said Prof. Li.

What’s more, the researchers demonstrated that oxidation resistance of MB radicals and reduced states played an important role in improving redox reversibility and air-stability by combining ex-situ electron paramagnetic resonance (EPR) with theoretical calculation.

To further verify the feasibility of MB molecule in AOFBs, they assembled ten units of 1000 cm2 AOFBs stacks. “We obtained the stacks with a discharge power of over 1 kW and a stable cycling capacity for 32 days,” said Prof. Zhang. “Our study may provide an important reference for the AOFB practical application.”

More information:
Yonghui Zhang et al, Insight into Air-stable Methylene Blue Catholyte towards kW-scale Practical Aqueous Organic Flow Batteries, Energy & Environmental Science (2022). DOI: 10.1039/D2EE03051A
Provided by
Chinese Academy of Sciences


Citation:
Researchers develop stable kilowatt-scale aqueous organic flow batteries (2022, December 8)
retrieved 8 December 2022
from https://techxplore.com/news/2022-12-stable-kilowatt-scale-aqueous-batteries.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no
part may be reproduced without the written permission. The content is provided for information purposes only.

Stay connected with us on social media platform for instant update click here to join our  Twitter, & Facebook

We are now on Telegram. Click here to join our channel (@TechiUpdate) and stay updated with the latest Technology headlines.

For all the latest Technology News Click Here 

 For the latest news and updates, follow us on Google News

Read original article here

Denial of responsibility! NewsAzi is an automatic aggregator around the global media. All the content are available free on Internet. We have just arranged it in one platform for educational purpose only. In each content, the hyperlink to the primary source is specified. All trademarks belong to their rightful owners, all materials to their authors. If you are the owner of the content and do not want us to publish your materials on our website, please contact us by email – admin@newsazi.com. The content will be deleted within 24 hours.
Exit mobile version